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Distribution of a Discrete Birth-and-Death Process 
with Banded Infinitesimal Generator 
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Carlos F. Borges * Craig S. Peters 

January 5, 1995 

Abstract 
We develop an algorithm for computing approximations to the sta- 

tionary distribution of a discrete birth-and-death process provided that 
the infinitesimal generator is a banded matrix. We begin by comput- 
ing stationary distributions for processes whose infinitesimal generators 
are Hessenberg. Our derivation in this special case is different than the 
classical one but leads to the same result. We then show how to extend 
these ideas to get approximations when the infinitesimal generator is 
banded (or half-banded). 

1     Introduction 

A birth and death process is characterized by a population of individuals 
whose number changes according to the outcome of two other stochastic pro- 
cesses consisting of births which increase the population and deaths which 
decrease the population. The transition probabilities for these two processes 
can, in general, depend on both time and population size. The model for 
this stochastic dynamical system is usually described by a master equation 
for the transition probability for population size at a given time. 

Let N(t) denote the population size at time t and define the transition 
probability for N(t) as P(n,t) = Vi{N(t) = n\N(f) = n'}. The transi- 
tion probabilities for births and deaths are usually modeled as Markovian 
processes by assuming that 

'Authors address: Code MA/BC, Naval Postgraduate School, Monterey, CA, 93943 



r(n,t)    =   ?r{N(t + dt) = k + l\N(t) = k} 

l(n,t)   =    ?r{N(t + dt) = k-l\N{t) = k} 

where dt represents the fundamental time unit. Time can be treated as either 
a discrete or continuous variable. In many situations it is reasonable and 
convenient to model these transition probabilities as being time independent 
and to assume that the probability that more than a single birth or death 
occurs in the fundamental time unit is zero. With these assumptions the 
master equation for P(n, i) can be written 

P(n,t + dt)    =    r(n-l)P(n-l,t) + l(n+l)P(n+l,t) + 

+    [l-(r(n) + l(n))]P(n,t) (1) 

The first approach to investigating 1 is to assume that 

lim P(n, t + dt)- P(n, t) = 0 
t—»oo 

and write the equation for the stationary transition probabilities, p(n), the 
probability that the population will eventually stabilize at n individuals, as 

0 = -(r(n) + *(n))p(n) + r{n - l)p(n - 1) + l(n + l)p(n + 1)       (2) 

This stochastic balance equation leads to the infinitesimal generator for 
the discrete time Markov process which has the following stationary distri- 
bution 

*(»)=Ko) n ^^ (3) 

In this paper we develop an algorithm for computing the solution to this 
problem and show how it can be generalized to compute approximate solu- 
tions for birth-and-death processes where both multiple births and multiple 
deaths can occur in the fundamental time unit. These methods are devel- 
oped by converting stochastic balance equations like 2 to matrix form and 
applying techniques from linear algebra. 

The virtue of the linear algebra approach is twofold. First, the use of 
finite precision calculations in linear algebra is well understood and many 



algorithms have been developed that can control the ill effects of round- 
off and other errors. Second, generalizations of the simple birth and death 
model give rise to generalizations of the master equations 1 and 2 for which 
solutions are not known. In this case, the methods we develop are still 
applicable. To motivate what follows, we now show how 3 results from 
solving an appropriate linear system. 

2    A Matrix Formulation 

We are interested in finding the stationary distribution p(n) which satisfies 
equation 2. We begin by converting 2 to matrix form. In what follows vectors 
will be denoted by lower-case bold Roman letters and will be assumed to be 
column vectors. We shall denote by 0 the vector of all zeros, by e the vector 
of all ones, and by e; the i'th axis vector, a vector whose i'th element is one 
and all others are zero. The sizes of these vectors, when they appear, shall 

be taken from context. 
To proceed, we represent the stationary distribution p(n) as an infinite 

column vector p whose i'th element p,- = p(i - 1) where i = 1,2,..., oo. Note 
that if there were a maximum population size N then p would be an element 
of 9lN+l. In general, however, this is not the case. 

The infinitesimal generator matrix QT is an infinite tridiagonal matrix 

with entries 

C = 
-(r(»-l) + f(t-l))   if i = j 

r(j - 1) if i - 1 = j 

0 otherwise 

(4) 

With these definitions, equation 2 becomes 

QTP = o (5) 

And we see that QT must be rank-deficient and p in its null-space (or equiv- 
alently, p is an eigenvector of QT associated with the eigenvalue A = 0). 
Equation 5 implies that any element of the null-space of QT solves the equa- 
tion. To get the stationary distribution we normalize using the law of total 

probability, so that e p = 1. 



3    Truncated Solutions 

It is not generally possible to solve infinite systems of equations, or find 
eigenvectors of infinite matrices, so we consider truncating the infinite sys- 
tem of equations. Graphically, we truncate the infinite system by by parti- 
tioning it in the following way 

p(0) 
X X 0 

X 

0 X 

X X X 

X X 

X 

X 
P(n~ 1) 

p(n) 
= 0 

and then dropping all but the first n equations. 
Letting Q% be the first principal n x n sub-matrix of QT, and p„ be the 

first principal n vector of p, we get 

QlPn = -l(n)p(n)en 

In effect, this is a matrix representation of the first n equations from 5. 
Letting pn = l(n)p(n)in and rearranging yields 

Qlfn = -^ (6) 

So, provided that Q^ is non-singular and that l(n)p(n) ^ 0, we can solve 
directly for a scalar multiple of the truncated stationary distribution pn. 

In particular, the truncated infinitesimal generator matrix is 

Ql = 

-r(0) 1(1) 
r(0)     -r(l)-/(l)    1(2) 

r(l) 

r(n-2) 

and has the following explicit LU factorization 

/(n-1) 
-r(n-!)-/(»- 1) 



L = 
-1 

1     -1 

U 

r(0)    -1(1) 

r(l) 

-/(n- 1) 
r(n — 1) 

To find the stationary distribution we solve, in succession, the triangular 

systems 

U tn    =    zn 

Since L is unit lower triangular we see that zn = e„ (indeed, in general 
one need only know U) and in is just the solution of 

Uin 

Backward substitution yields 

fn = 
Z(l)/(2)...Z(n)        /(2)/(3).../(n) /(») 

.r(0)r(l)...r(n)'     r(l)r(2)...r(n) 

This implies that 

r(n - l)r(n)'     r(n) 

P(*) = P(»+I) II ^ßr) (7) 
j=fc+l 

Setting k = 0 and rearranging yields 

Kn+i)=P(o)nr(j 1] 

'(i) 
which is a well-known formula for the stationary distribution. 

Note that this formula does not give the values of the stationary distri- 
bution since it involves the unknown scaling factor p(0). However, it does 
allow us to determine, exactly, the shape of the stationary distribution. We 
can make a common approximation to the stationary distribution in the 



following way. Assume that S is the probability that the population size is 
less than n. Then eTpn = S and hence 

S   f 
eTfn 

In practice, one takes n to be large so that S is close to 1. Then 

1    „ 
Pn*eH, ■n 

4    Populations with Multiple Births 

Now consider populations in which multiple births can occur. Although one 
approach to problems of this type is to re-scale the birth rate, r(n), in some 
appropriate way and solve the single step problem, it is not difficult to derive 
the solution using traditional methods. We show that, as before, the matrix 
approach gives the formal solution when solved analytically. 

Let r(n, k) be the rate at which births of k individuals occur given that 
the population size is n. Equation 2 becomes 

(oo \ n 

£ r(n, k) + l(n)   ?(«)+]£ r{n-k, k)p(n-k)+l(n+l)p(n+l) (8) 

The infinitesimal generator is an infinite lower Hessenberg matrix whose 
elements are given by 

Ql ,1 

r(j,i~j) i£i>j (g) 

l(j) if i + 1 = j y J 
>      ) l\ 

0 otherwise 

The truncated system has the same form as before except that QT is 
now lower Hessenberg instead of tridiagonal. In particular, letting pn = 
/(rc)p(ra)f^ we have 

Ql** = -^ (10) 

As before, we only need to know U from the LU factorization of Q 
to find fn.   In block form, the factorization of the truncated infinitesimal 
generator matrix, an n x n lower Hessenberg matrix, looks like 



1 °Tl "a   ßej~ ' a   /3ef 

.     O! 
L 0      U r     Q^ 

Where LÜ is the LU factorization of the Schur complement which is an 
n-lxn-1 lower Hessenberg matrix. In particular 

re. 
a 

Note that U is an upper bidiagonal matrix whose first sup er-diagonal 
has elements Ui:i+i = l(i). Let a, - i/,-,; be the diagonal elements, these can 
be found sequentially in the following way. 

ax    =    5>(0,*) 
fc=i 

r(0, *)/(!) 
Pl,k 

<?\ 
k = 1,2,...,K 

And 

(Ti+i    =    Y, r(h k) + l(i) ~ Pi,i 
k=i 
r(i,k) - pi - l,k + 1 

Pi+l,n     — 

/(*)        Jfe = l,2,...,n-1 

The final form of U is 

tf = 

i/(t) 

ffi    -1(1) 

0-2 

-/(n-1) 

Solving by backward substitution yields 

n+1   U-i) 
p(k)=P(n+i) n U1 

j=fc+l CTj 



And setting k = 0 and rearranging yields 

ra+l 

P(n+l) = p(0)n^ 

5     Processes with Multiple Births and Multiple 
Deaths 

In the cases considered so far, the infinitesimal generator matrix is lower 
Hessenberg and the solution algorithms are equivalent with the classical 
solution by recursion algorithm for finding truncated solutions. The deriva- 
tions we have shown are different than the classical approach but are useful 
because they will allow us to look at more general birth and death models 
in a natural way. We now consider a process in which both multiple births 
and multiple deaths are allowed. We will assume that jumps- as large as 
±K occur in both directions (it is straightforward to extend what follows to 
processes where the maximum possible number of births is not the same as 
the maximum possible number of deaths). The stochastic balance equation 
is 

0 = J2 {-(rK k) + l(n, k))p(n) + r(n - k, k)p{n - k) + l(n + k, k)p(n + k)} 
fc=i .    , 

(11) 
The infinitesimal generator matrix is banded, with half-bandwidth K, 

and of the form 

Ql = 

[ -£E=i(rM)+ '(*>*)) ifi = i 
r(j,i-j) if i>j 
l(j,j-i) if i<j 

0 otherwise 

(12) 

The truncated system can be written 

QlPn + sWp(»> = 0 

where p(71' = [ p(n)   p(n + 1)    ...   p(n + K - 1) 
elements 

iT 
and 5(") € ®nxK has 



KJi 3 + n ~ 0   ifi>n — K + j—1 
0 otherwise 

We shall call S^ the homogeneous complement of Q^ in QT- 
Rearranging the truncated system yields 

QlVn = -S(n)P(n) 

Now, let F be the solution to 

Then pn = Fp(n) and we see that p„ is in the range of F. If F is rank 
one then we can get bpn up to an unknown scaling. This is the essence of 
solution by recursion since in those cases F surely has rank one. 

Based on the preceding analysis, we propose the following algorithm to 
find p(Q),p(l),...p(N0) for a birth and death process that can have from 1 
to K deaths in each time step. We assume that NQ > K. 

1. Let n = N0. 

2. Using the truncated infinitesimal generator Q„ and its homogeneous 
complement S^ solve Qr

nFn = -SK 

3. Compute the singular value decomposition of Fn, that is UT,V   = Fn 

4. Construct the approximation pn ss aui where a is some unknown 
constant and ui is the first column of U. 

5. If <T{\ the largest singular value of Fn is sufficiently greater than a^ 
then stop and accept the approximation. Otherwise set n := n + 1 and 
return to step 2. 

It is possible to update Fn and it's singular value decomposition quickly. 

6    A More General Formulation 

The method that has been developed above can be put into a much more 
general framework. We begin by noting that any Markov process whose 
infinitesimal generator is banded is a Quasi-Birth-Death (QBD) process. 
Provided we choose the block size correctly (it must be no less than the 



bandwidth) the infinitesimal generator can be written as a block tridiagonal 

matrix 

QT = 

D0    Ar 
5i    Dx    A2 

If we partition p = 7T0      7Tl so that it is compatible for block 

multiplication, then the stochastic balance equations can be written in the 

following form 

DQICO + Aiici = 0 

and 

Bi-Ki-X + DiTTi + Aj-+l7T;+i  = 0 

for t= 1,2,... 
There are two common approaches to problems of this type. First, if the 

Markov process represented by this matrix is nearly completely decompos- 
able (NCD), that is, if the off-diagonal blocks are sufficiently small in some 
sense, one can disregard them and assume the Markov chain is completely 
decomposable (some justification for this can be found in [3]). Then n are 
solutions to Di-Ki = 0 and can be solved for individually. This yields ap- 
proximations to the segments of p which must then be carefully assembled 
to get the stationary distribution (see [4] for a beautiful treatment of these 
methods). The problem with this approach is that it is hard to tell how good 
the approximations to the 7T; are since it is not clear what effect disregarding 

the Ai and 5, will have on the solution. 
A second approach is stochastic complementation ([2]). This method 

also computes the segments 7T; but does so exactly using block Gaussian 
elimination. This method does not throw anything away so it is exact (at 
least on paper). Unfortunately, the method is quite costly. 

Our method can be extended quite naturally to this more general frame- 
work. In particular, given the block tridiagonal QT shown above, we define 

the homogeneous complement of Di in QT to be Si = I 5;_i    Ai    , where 

Ai is a matrix composed of only the non-zero columns of Ai, Bi is defined 
similarly, and Bo is taken to be a zero matrix. We then solve 

10 



and approximate 7T; with the left singular vector associated with the largest 
singular value of F{. This is a simple process and allows us to estimate of 
the quality of our approximations by examining the ratios of the largest 
and second largest singular values of each F{. This method is embarassingly 

parallel. 
We can use this method to generate a starting guess for those algorithms 

known generally as Iterative Aggregation/'Disaggregation (IAD). These are 
efficient multi-grid like methods and include the well-known KMS [1] and 
Takahashi [5] algorithms. We can also develop an adaptive variation by 
using the algorithm of section 5 to solve for 7To first. We then apply this 
same algorithm to solve for each succesive segment using the more general 
definition of the homogeneous complement. This allows us to vary the block 
sizes adaptively so that each estimate of a segment will be a good one. 
This approach lacks parallelism but would give both an initial guess and a 

partitioning for IAD algorithms. 

7    An Example 

As an example we look at a simple birth-and-death process in which as many 
as two births or deaths can occur in the fundamental time unit. The specific 
model we will look at is characterized by the following transition rates 

r(n,l) = 0.237(n+l)e-°-0165n 

r(n,2) = 0.105(n+l)e-°-0231n 

Z(n,l) = 0.088n 

Z(n,2) = 0.018n 

Notice that there is a positive birth rate even when the population size 
is zero. This migration term is necessary so that 0 is not an absorbing state 
which would preclude the existence of a stationary probability vector. 

Analytically, we need to find the null-vector of the full infinitesimal gen- 
erator Q, an infinite matrix. In practice it is sufficient to find the eigen- 
vector associated with the smallest magnitude eigenvalue of Qn. As n gets 
large, this eigenvector should converge to the stationary distribution, after 
appropriate normalization.   For this example, when n — 200 the smallest 

11 



eigenvalue has magnitude roughly 10"13 and we see good convergence of the 
eigenvector. Of course, we had to solve a large eigenvalue problem to get this 
approximation. Below is a plot of the first 100 elements of the eigenvector 
(past 100 the distribution dies out) 

We now explore the application of the methods described in this paper to 
this example. First of all, working with the matrix truncated to the first 100 
equations we take the homogeneous complement, solve and return the left 
singular vector associated with the largest magnitude singular value. The 
ratio of the largest to the second largest singular value is roughly 3 X105. The 
approximation is almost identical to that found by solving a full 200 X 200 
eigenproblem. Below is a plot of the difference between the approximations 
after appropriate normalization. 

12 



Notice that the difference never exceeds 2.5 x 10-7 in magnitude. More- 
over, the relative error in the approximation for all n such that p(n) > .005 
never exceeds 3 X 10-12. Note also that we did not have to solve a 200 X 200 
eigenproblem to get this solution. We only had to solve a single linear sys- 
tem, with a 100 x 100 matrix and a 100 X 2 right hand side, and compute 
the singular value decomposition of a 100 X 2 matrix. 

If we truncate the infinitesimal generator so that it covers population 
sizes ranging from 40 to 90 only we find that the ratio of the two largest 
singular values of F is roughly 36.4. After appropriate normalization, the 
difference between this segment and the full solution is always less than 

6 X 10-4, we see this plotted below. 

80 90 
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And finally we show a plot of the computed segment (dotted line) with 
the segment from the full solution. 

We see that the method works quite well in this case and is much less 
costly since the SVD computation involves a very small matrix. 

References 

[1] R. Koury, D.F. McAllister, and W.J. Stewart, Methods for Comput- 
ing the Stationary Distributions of Nearly-Completely-Decomposable 
Markov Chains. SI AM Journal ofAlgebraic and Discrete Mathematics, 
v. 5, no. 2, pp. 164-186, 1984. 

[2] CD. Meyer, Stochastic Complementation, Uncoupling Markov Chains 
and the Theory of Nearly Reducible Systems. SIAM Review, v. 31, 
no. 2, pp. 240-272, 1989. 

[3] H.A. Simon and A. Ando, Aggregation of Variables in Dynamic Sys- 
tems. Econometrica, v. 29, pp. 111-138, 1961. 

[4] W.J. Stewart, Introduction to the Numerical Solution of Markov 
Chains. Princeton University Press, 1994. 

[5] Y. Takahashi, A Lumping Method for Numerical Calculation of Station- 
ary Distributions of Markov Chains. Technical Report B-18, Dept. of In- 
formation Sciences, Tokyo Institute of Technology, Tokyo, Japan. June 
1975. 

14 



DISTRIBUTION LIST 

Director (2) 
Defense Tech Information Center 
Cameron Station 
Alexandria, VA 22314 

Research Office (1) 
Code 81 
Naval Postgraduate School 
Monterey, CA 93943 

Library (2) 
Code 52 
Naval Postgraduate School 
Monterey, CA 93943 

Professor Richard Franke (1) 
Department of Mathematics 
Naval Postgraduate School 
Monterey, CA 93943 

Professor Carlos F. Borges (20) 
Code MA/Bc 
Naval Postgraduate School 
Monterey, CA  93943 

Professor Craig S. Peters (10) 
Code MA 
Naval Postgraduate School 
Monterey, CA 93943 

Professor William J. Stewart (1) 
Department of Computer Science, Box 8206 
North Carolina State University 
Raleigh, NC 27695 


